Genetic algorithm based feature selection for target detection in SAR images

نویسندگان

  • Bir Bhanu
  • Yingqiang Lin
چکیده

A genetic algorithm (GA) approach is presented to select a set of features to discriminate the targets from the natural clutter false alarms in SAR images. Four stages of an automatic target detection system are developed: the rough target detection, feature extraction from the potential target regions, GA based feature selection and the final Bayesian classification. A new fitness function based on minimum description length principle (MDLP) is proposed to drive GA and it is compared with three other fitness functions. Experimental results show that the new fitness function outperforms the other three fitness functions and the GA driven by it selected a good subset of features to discriminate the targets from clutters effectively. q 2003 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection for Target Detection in SAR Images

A genetic algorithm (GA) approach is presented to select a set of features to discriminate the targets from the natural clutter false alarms in SAR images. Four stages of an automatic target detection system are developed: the rough target detection, feature extraction from the potential target regions, GA based feature selection and the final Bayesian classification. Experimental results show ...

متن کامل

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel ta...

متن کامل

Target Detection Improvements in Hyperspectral Images by Adjusting Band Weights and Identifying end-members in Feature Space Clusters

          Spectral target detection could be regarded as one of the strategic applications of hyperspectral data analysis. The presence of targets in an area smaller than a pixel’s ground coverage has led to the development of spectral un-mixing methods to detect these types of targets. Usually, in the spectral un-mixing algorithms, the similar weights have been assumed for spectral bands. Howe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Image Vision Comput.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2003